Skip to main content
Log in

Evaluation of tailored magnetic composite films for near-field electromagnetic noise suppression

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effects of permeability and permittivity of the magnetic nanorods filled in composite films have been studied in the broadband radio-frequency range from 0.5 to 10 GHz on a microstrip line. The transmission power absorption of the composite film on a microstrip line was simulated using 3D FEM HFSS program. The model of microstrip line was designed based on IEC standard (IEC 62333-2). The permeability of composite film with magnetic nanorods could be controlled by the aspect ratio of nanorods. The ferromagnetic resonance frequency and the relative complex permeability with the change of aspect ratio were calculated by the Landau–Lifshitz–Gilbert equation. Given the bulk magnetization of 5 kG, the power loss frequency region has exhibited the 2.5–7 GHz broadband frequency by mixing of nanorods with various aspect ratios from 2 to 10. The permittivity effects have been evaluated by changing the real part of permittivity with a fixed imaginary part value and vice versa. The power losses were increased with the proportional to the imaginary part of permittivity and did not show any significant change with the increment of the real part of permittivity. The conduction electromagnetic noise in near field can be suppressed by controlling complex permeability with various aspect ratios of the magnetic nanorods in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H.W. Ott, Noise Reduction Techniques in Electronic Systems, 2nd edn. (Wiley, New York, 1998), pp. 159–161

    Google Scholar 

  2. H. Ono, S. Yoshida, S. Ando, J. Appl. Phys. 93, 6662–6664 (2003)

    Article  CAS  Google Scholar 

  3. S. Yoshida, H. Ono, S. Ando, F. Tsuda, T. Ito, Y. Shimada, M. Yamaguchi, K.I. Arai, S. Ohnuma, T. Masumoto, IEEE Trans. Magn. 37, 2401–2403 (2001)

    Article  CAS  Google Scholar 

  4. Y. Shimada, M. Yamaguchi, S. Ohnuma, T. Itoh, W.D. Li, S. Ikeda, K.H. Kim, H. Nagura, IEEE Trans. Magn. 39, 3052–3056 (2003)

    Article  CAS  Google Scholar 

  5. K.H. Kim, M. Yamaguchi, K.I. Arai, J. Appl. Phys. 93, 8002–8004 (2003)

    Article  CAS  Google Scholar 

  6. H. Ono, T. Ito, S. Yoshida, Y. Takase, O. Hashimoto, Y. Shimada, IEEE Trans. Magn. 40, 2853–2857 (2004)

    Article  CAS  Google Scholar 

  7. S.-T. Kim, H.-S. Cho, S.-S. Kim, IEEE Trans. Magn. 41(10), 3562–3564 (2004)

    Google Scholar 

  8. K.H. Kim, J. Magn. 11(3), 130–134 (2006)

    Article  Google Scholar 

  9. S. Yoshida, RF Current Absorption Sheet Suppresses EMI. Nikkei Electronics Asia, April 2002 Issue (2002)

  10. S. Yoshida, M. Sato, E. Sugawara, Y. Shimada, J. Appl. Phys. 85(8), 4636–4638 (1999)

    Article  CAS  Google Scholar 

  11. B. Zhang, J. Zhang, F. Chen, Res. Chem. Intermed. 34(4), 375–380 (2008)

    Article  Google Scholar 

  12. K.H. Kim, S. Ohnuma, M. Yamaguchi, IEEE Trans. Magn. 40, 2838–2840 (2004)

    Article  CAS  Google Scholar 

  13. K.H. Kim, M. Yamaguchi, IEEE Trans. Magn. 39, 3031–3033 (2003)

    Article  CAS  Google Scholar 

  14. K.H. Kim, S. Ikeda, M. Yamaguchi, K.I. Arai, J. Appl. Phys. 93, 8588–8590 (2003)

    Article  CAS  Google Scholar 

  15. K.H. Kim, M. Yamaguchi, Phys. Metals Metallogr. 102(1.1), s74–s79 (2006)

    Article  Google Scholar 

  16. K.H. Kim, M. Yamaguchi, H. Orikasa, T. Kyotani, Solid State Commun. 140(11–12), 491–494 (2006)

    Article  CAS  Google Scholar 

  17. M. Yamaguchi, K.-H. Kim, S. Ikeda, J. Magn. Magn. Mater. 304(2), 208–213 (2006)

    Article  CAS  Google Scholar 

  18. K.H. Kim, Y.-A. Kim, M. Yamaguchi, J. Magn. Magn. Mater. 302(1), 232–236 (2006)

    Article  CAS  Google Scholar 

  19. K.H. Kim, M. Yamaguchi, J. Appl. Phys. 99, 08M902 (2006)

    Article  Google Scholar 

  20. K.H. Kim, M. Yamaguchi, N. Matsushita, M. Abe, J. Magn. Magn. Mater. 290–291, 1363–1366 (2005)

    Article  Google Scholar 

  21. K.H. Kim, S. Ohnuma, M. Yamaguchi, IEEE Trans. Magn. 40(4), 2838–2840 (2004)

    Article  CAS  Google Scholar 

  22. S. Yoshida, K. Kondo, H. Ono, 157th Bulletin of Topical Symposium of the Magnetics Society of Japan (2007), pp. 23–30

  23. L. Sun, Y. Hao, C.-L. Chien, P.C. Searson, IBM Res. Dev. 49(1), 79–102 (2005)

    Article  CAS  Google Scholar 

  24. J.A. Osborn, Phys. Rev. 67(11–12), 351–357 (1945)

    Article  Google Scholar 

  25. C. Kittel, Phys. Rev. 73(11), 155–161 (1948)

    Article  CAS  Google Scholar 

  26. P. Xub, T.-Y. Caib, Z.-Y. Li, Solid State Commun. 130, 451–454 (2004)

    Article  Google Scholar 

  27. O. Kohmoto, Mater. Sci. Eng. A 449–451, 394–396 (2007)

    Google Scholar 

  28. B. Nam, Y.-H. Choa, S.-T. Oh, S. Lee, K.H. Kim, IEEE Trans. Magn. 45(6), 2777–2780 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy (MKE), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Hyeon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, B., Lee, J., Choa, YH. et al. Evaluation of tailored magnetic composite films for near-field electromagnetic noise suppression. Res Chem Intermed 36, 827–834 (2010). https://doi.org/10.1007/s11164-010-0187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-010-0187-5

Keywords

Navigation